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JPL  Summary

California Institute of Technology

Goals:
* Demonstrate ISAL functionality in photon-starved conditions.

* Find a metric that can predict the success/failure of PGA based on the
return signal strength.

Outline:

* Testbed hardware setup and data processing
* Basic setup for low-CNR
* Atmospheric turbulence synthesis
* Data pipeline
* CNR
* CNR definition for a single range-bin (including detector noise)

e Various metrics based on CNR
* Image quality metric to compare to metrics based on CNR

* Experimental Data
* High CNR functionality tests
* Low CNR imaging examples showing PGA failure at mean CNR="~0.25
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Testbed Hardware Setup and Data
Processing
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JPL  Transceiver / Target Layout
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JPL  Transmitter Designs
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* No atmospheric turbulence
* Fiber termination and collimating lens

* Atmospheric turbulence
1. Fiber Termination
Collimating Lens — collimate light from fiber
Iris — truncate Gaussian beam to FWHM
Focusing Lens — focus collimated light through the phase wheel
Phase Wheel — introduce phase error
Speckle Image — focal point of focusing lens

N o U kE WD

Magnification Lens — magnify the speckle image onto the target

e

6 7
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JPL  Testbed Overview
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PGA Summary

Our best results came from starting the window at 75% of the
cross range extent, allowing @ to converge to nearly zero,
then decreasing window size by 25%. Repeat until window is
~10 pixels in cross range.

Bind brightest spot

Pulse Data FFT in Pulse History in Cross Range
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Over-sampling in range or including range-bins with very low CNR shouldn’t
influence the phase increments. Simply includes noise in summation.
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CNR Derivation and
Image Quality Metrics
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JPL  CNR Definition
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. . Estimate of carrier strength
* CNRis defined as : —18
StdDev of estimate of carrier strength

* Measurement can be modeled as
UdVUhNLNs eXP(i¢)=77dv77hNLNs eXp(i¢s)+N(0'UszN)+N(O’O'fuzp)

* The carrier for a single range bin is 7,./n,N.Ns exp(ip,)

) ) . N
* Shot noise variance is o2, zndj

» Detector NEP noise variance is o, =2PhN—2EV’2
* Model is used to estimate the carrier strength and its variance

\/Vélr( Ns) \/2N5+ 1 +4NSG§1EP+ 4O_riEP + 40-:\11EP
Nl Male MaNe  nmgneN 174meN,

CNR = (N.N,) N
NL

CNR = ——Ns ~ [2aNs o >>/1/
szS L1 2 N4l

Nty M3
~ Ng for N <<}/
4T Ns s N4

R. L. Lucke and L. J. Rickard, "Photon-limited synthetic-aperture imaging for
planet surface studies planet surface studies," Applied Optics, vol. 41, no.
24, pp. 5084-5095, 2002.
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Quality metrics based on

pre-PGA data:

* # Photons in each range-bin
Maximum, Mean, Sum, Sum of squares

Quality Metric Selection

Quality metric based on
post-PGA result:

* Image Contrast-to-Noise Ratio

. (= mean(foreground)—-mean(background)

* CNR of mean photons per range-bin stdev(background)

« CNR of each range-bin e Foreground region is determined based
Maximum, Mean, Sum, Sum of squares on a priori knowledge of the target.

« Phase progression Variance of each * PGA performance cannot be assessed as
range-bin C decreases past 1.

Minimum, Mean, Sum, Sum of squares

« 10710 Receiver PSD, ISAL:150907:1358

Y, NS

1 | | 1 . | | 1
1564 1565 1.566 1.567 1.568 1.569 1.57 1.571
Up-Chirp, Return Frequency, MHz

Primary Question:

What quality metric has a consistent
value at the threshold where PGA
doesn’t work?

Immediate Question:

What quality metric has a consistent
value when the image contrast-to-noise
ratiois 1?
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JPL - contrast depends on Cross-Range Extent
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Considering only a single range bin and a consistent

M: PSD of single range-bin for two different targets
* The image contrast is inversely proportional to T 1
the number of cross-range bins populated by the 08 1
target. 8 o6l .
o]
) N-1|p |12 — L yN-1p,, |2 Toar |
* Parseval’s Theorem: Y7 =o|P,|° = ﬁZk=o|Pk| ol |
* Sum of a single range-bin’s magnitude over all 0
pulses must equal the mean of the cross-range Pulse Index

pixel values.

target, contrast will be high. H

* If a single cross-range pixel is filled by the

. . Image of Single Range-Bin Image of Single Range-Bin
* If several cross-range pixels are filled by the for target 1 for target 2
target, contrast will be low. 0 0
8 8
(] ()
= =
. . . . . . © ©
*This idea is confirmed in the experimental data - 6 - 6
presented later. Z 4 Z 4
2 2 IIIII
0 0 ’

123456738910 12345678910
Cross-Range Index Cross-Range Index
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Top View
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Contrast: 1.9
# LO Photons per pulse: 5.05e+12
# Range Bins: 33.9

# Photons per Range Bin:
* Max: 1.92

* Mean: 0.55

* Sum: 18.54

* Sum of sqr: 18.52

CNR of Mean Photons per Range Bin: 0.27

CNR of Active Range Bins:
* Max: 0.66

* Mean: 0.24

* Sum:8.15

* Sum of sgr: 3.14

Difference

14
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JPL  1p| L ogo on Spectralon
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JPL  S;tellite Image
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JPL  Ccontrast vs Mean CNRs Uy
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JPL Low Mean CNR Images \ine Target top row)

California Institute of Technology Area Ta rget (bottom rOW)
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JPL  conclusions
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* Testbed build to perform ISAL studies
e Short 2m or long 400m range-to-target
* Synthesized atmospheric turbulence
* High and very low CNR capabilities

* CNR Derivation
* Rigorous derivation of CNR for a single range-bin
* Quality metric for overall signal: “Mean CNR”
e Quality metric for image: Contrast-to-Noise Ratio

* Experimental Results
* Target cross-range extent decreases image contrast (for constant CNR)
* PGA can work for simple images down to ~0.25 CNR
* Atmospheric turbulence raises minimum CNR threshold to ~0.75
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JPL  photon Count Estimation
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A, . Detector area
ny - Detector efficiency
Electron charge
Detector Gain
Heterodyne efficiency
.. #LO photons per pulse
# measured photons
. #range bins
# signal photons per pulse
Plank’s constant
Pulse time

* Detector DC voltage determines local oscillator photon count:

® ®

PL :Vi = NL :E
GDC EPh

* The mean one sided PSD: (j" voltage measurement in the kt"* pulse)

»

2 Np-1 2

Pp=—°=
" NGNS f kZ;

N Sz z 35z
> z = =

, u=[o,N, -]

R .. ju
DV exp(—ﬂ;rdj—j

j=0 \

* The number of photons in each range bin is given by:

P _ 20T (R —Puc) P _ P N 10710 Receiver PSD, ISAL:150907:1358
Het — = Ret — 4P = S E T T T T T T T T
AC L Ph 251 ]
2 - -
15 i

Power Density, V2/Hz

1 1 1 1 1 1 1 1

1564 1565 1566 1.567 1.568 1.569 1.57 1.571
Up-Chirp, Return Frequency, MHz
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+ Total power at detector due to an E field is « Measured quantity is expected ge:ee:or a:_a‘_
. . . . etector erricienc
related to the mean field amplitude: number of signal photons plus Z‘f Electron charge Y
_ complex noise: ) :
P =] 1‘Eexp(Z;riin(/))‘zdA:hC—NEEAjE2 G:  Detector Gain
A2 At 2 _ _ _ 17, Heterodyne efficiency
g2 _ 2heN 14N N5 exp(ie) =77, N Ns exp(io, ) + N, : #LO photons per pulse
ANT N(0,6%)+N(0.0%) n:  # measured photons
* Detector output current due to single range Ng: #range bins
element: * Measurement has a variance N, :  #signal photons per pulse
. h:  Plank’s constant
. . 2 .
1y =2 [ 3]E, exp(2ai( f,+3 )t) + E, exp(2ai(f, + 1 (14 A0)) (1 40) i dA due to shot noise: o Pulsetime
I = EE
=1 [ SAELH I A+ A1, E B cos(2mft ) | ot =, Mg Moo,
JINN
=n,e N, ;L N, +2n,8 i TL > cos(27Aft +¢,)
) * Measurement has variance due to detector
* DFT of 2M samples of I; at the carrier noise

frequency:

Trer =3 hc "~ 2h%c?

2
. 1 ( Revr A T] PLAr

2M-1 ’
D(Af):ﬁ ZO 2ndeMcos(27zAftm +o,)exp(—27iAft,)

=n4eymN N exp(ig,) * CNRis defined as

Estimate of carrier strength

StdDev of estimate of carrier strength
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Estimate of carrier strength

* CNRis defined as

StdDev of estimate of carrier strength

« Measurement gives number of detected photons N.

4 \/UhNLNs eXp(i(o) =14/ N Ng exp(igps)+ N (O'O_SN )+ N (OrUNEp) O-SZN /T

 Second moment gives estimate of N

var(nd 7N N exp(i(p)) = var(77d 7NN exp(ig, ))+ var(N (0,0 ))+Vvar (N (0,0, ))

2 2
(N Ng) = (NN ) +2 7507 Tree.
a7

*  Fourth moment gives variance of N

. - ~ 2 AN 4 802 02
T = (o5 ) g o5 i)t
_ 2N 1 | ANgoye 4 40%er . 400

g mnt o mim N mimiNG N,

. CNR = <NLN5>~ _ N
\/V3r(NLN5) \/ZNS " 1 +4NSU§EP+ 40w | 404

Nty e e Ne mameNg - mgmaNy
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CNR Derivation (cont.)

A, . Detector area

ny - Detector efficiency

e:  Electron charge

G: Detector Gain
Heterodyne efficiency
.. #LO photons per pulse
# measured photons

. #range bins

# signal photons per pulse
Plank’s constant

Pulse time

»

Sz z 3 zZz33

B

An unbiased estimator of N5 1s 7 - 267, since (n - 26™) = 5* = Ns. Since, from Eq. (5), o" = constant, the
variance of this estimator is the same as the variance of n. Using the definition given above. the CNR of
heterodyne detection for imaging applications 1s the ratio of Ns to the standard deviation of its estimator:

CNRpy = Ny o [MMNS e e s gy

2N 1 2
L o)
NdMh Mg

®ngypNs  for Ny << 1/(ngnp) .

where Eqs. (3) and (6) have been used. Taking 1,;=n; = 1 in the first approximation shows that the best
possible CNR of heterodyne detection is a factor of J2 below the best possible CNR of direct detection.
For Nz <= 1/{ngmu). CNRpy 15 proportienal to the number of photons detected, rather than to the square

R. L. Lucke and L. J. Rickard, "Photon-limited synthetic-aperture imaging for
planet surface studies planet surface studies," Applied Optics, vol. 41, no.
24, pp. 5084-5095, 2002.
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Contrast vs Mean & Max CNR
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