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JPL  Summary

California Institute of Technology

Hardware Outline
* System Overview
e Tunable Laser
* Frequency Monitor

Chirp duration rationale based on atmospheric turbulence

Hardware Chirp Linearization

Software Chirp Linearization

Chirp Quality measured from Impulse Response
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JPL 5y stem Overview

California Institute of Technology

* Tunable laser
* Frequency Monitor measures chirp rate

* Imaging system observes the target

Tunable Lo rrEQUERCY ONNOT . :
Laser e |

Transmitter
Subassembly
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Receiver

AOMZ - Subassembly

Imaging System
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JPL  Tunable Laser

California Institute of Technology

* Thorlabs TLK-1300R Fiber-Coupled
Littrow external cavity laser Output Laser

Fiber Diode
* 50mW

e 10dB tuning range of 130 nm, 1310
nm center wavelength

* Electric servo tuner replaced with
Thorlabs DRV181 PZT

Fiber Qutput

|
\;\\\:j/n

Optimal Pivot Point for Grating to
Obtain Mode-Hop-Free Tuning

‘w ] Pivot Point

Half-Butterfly Gain Chip ; Adjustment

Low Loss Due to High-
Efficiency Grating

PZT Tuner Grating

--T 7
T &/ Grating on Pivot Arm

www.thorlabs.us
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JPL  trequency Monitor

California Institute of Technology

* Fiber Mach-Zehnder interferometer with 30m path length difference
 AOM frequency difference 400kHz
* Beat frequency measured by photodiode: Af = Z—{%D + Afsom

Batch 1000 voltage measurements, FFT, identify frequency of peak as

Af, solve for i
dt

! 30m
1 50% mm | AOMI 7 m 50%
i L A/D
1%
| A AOM?2 A
Tunable 1 50% 50%
Laser - | )
_______________________ Frequency Monitor
99% |
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JPL | maging System

California Institute of Technology

AOM frequency difference 900kHz

90% laser power illuminated the target

10% laser power acts as local oscillator for heterodyne detection

Range-to-target varies from 2 meters to 400 meters for different tests

Frequency Monitor

Tunable
Laser

Transmitter
Subassembly

AOM1 —ml—

Receiver
Subassembly

AOM2 —m—

Imaging System
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JPL | ong Range Testbed

California Institute of Technology

* 400 meters from
transmitter/receiver to
mirror target ' | Mirror Target

e Observed effects of
atmospheric turbulence
using non-chirped signal

e Used unwrapping of phase
of return signal to
determine limit on chirp
duration

Transmitter
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JPL  Tohletop Testbed

California Institute of Technology

2 meters from transmitter/receiver to
target

ISAL imaging demonstrations

Operates at high or low CNRs

Operates with or without synthesized
atmospheric turbulence
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50m Atmosphere Characterization

Mirror Target
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JPL  phase Unwrapping

California Institute of Technology

° AtmOSpheriC tu rbu Ience Wi” Ca use the 10 HoundltripAirTurbul!ence (AF’hase‘btwn return & freq monitor).lm rad
phase of the return signal to drift 3 |

* To focus an image from the ISAL
system, the phase must be connected
between pulses

* Phase drift between pulses must be

less than /2 mr
* Phase of non-chirped signal - 5
unwra p pe d . % 10 = pnsz: e 20 40 50 60
. . Time (s
e Allan deviation of phase computed for [ —
inter-chirp drift | P
 Standard Deviation of pulses’ phase 2 P e e
(sub std) computed for intra-chirp e
drift |
* Chirp rate between 20 and 40
milliseconds

| ST ! FETPTeN | I ke Loeeee feoveseene. ) i PPy |
0 20 40 60 80 100 120 140 160 180 200
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JPL  Uncompensated Chirp

California Institute of Technology

* Laser uses a PZT to move a
grating to tune the laser

e Control input is a triangle wave
which would ideally give a square
wave for chirp rate

* Frequency monitor gives the
chirp rate

df £ dt, THz/s

* PZT is not closed loop and has
finite frequency response

* Ringing is observed when PZT : A |
changes directions 0 01 02 03 04 05 06 07

Elapsed Time, sec

* Constant control rate does not
give constant tuning rate
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JPL  |terative Compensation

California Institute of Technology

* Control is open loop, but loop
can be manually closed by
iterating on the control input

* Shift response to compensate for - | -
time delay in PZT controller A o o ™

 Compute error between control | | | | |

05

and response | |

df /dt, THz/s

* Proportional gain: 0.5

osf | | | | |

* Low-pass filter (moving window | | | | |
average) smooths the control Jo | | B )
input to remove ringing from et et byt
feed-back signal when PZT DRI B
reverses travel direction

e Several iterations performed

4/19/2016 SPIE 9846-13 12



Hardware eeeeee Chirp Duration ee Linearization eee Chirp Quality cooo

JPL  post-processing

California Institute of Technology

* The chirp rate can be manipulated by distorting time

* Voltage history from the receiver photodiode can be resampled in time
to compensate for fluctuations in the chirp rate

* The noisy chirp rate Z—f is measured by the frequency monitor

* The phase progression is related to the passage of time:
¢ = (Z{i + AfAOM) (tf - to)

* Replace the noisy chirp rate with a constant and introduce pseudo time:
(Z{i + AfAOM) (tf - to) (dfx + AfAOM) (tf - to)

* Take photodiode vc()lt)age history V; and sample at fractional index
(df ti _d_f)f
dt dt

J=0 dfx
qtcTASf aom

i"=i+ Y
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JPL  Chirp Rate

California Institute of Technology

Before Resampling

Chirp Rate, dF/dt, THz/s
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Elapsed Time, sec
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After Resampling
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JPL  trequency Monitor PSD

California Institute of Technology

Before Resampling
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After Resampling
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JPL | pulse Response (IPR)

California Institute of Technology

* Shiny metal ball as target of ISAL
transceiver (nearly perfect point

target)

* Resample voltage history to
linearize chirp

* Averaged PSD of ~200 linearized

chirps

* Main lobe closely matches the
theoretical IPR function.
Difference indicates loss of

0.04mm of range resolution out

of 2mm total resolution.
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Relative Power, dB

ISAL:140603:1051, IPR
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JPL  Fyvample Imaging Result

California Institute of Technology

Top View
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