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Summary

• Hardware Outline
• System Overview

• Tunable Laser

• Frequency Monitor

• Chirp duration rationale based on atmospheric turbulence

• Hardware Chirp Linearization

• Software Chirp Linearization

• Chirp Quality measured from Impulse Response
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System Overview

• Tunable laser

• Frequency Monitor measures chirp rate

• Imaging system observes the target
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Tunable Laser

• Thorlabs TLK-1300R Fiber-Coupled 
Littrow external cavity laser

• 50mW

• 10dB tuning range of 130 nm, 1310 
nm center wavelength

• Electric servo tuner replaced with 
Thorlabs DRV181 PZT
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Frequency Monitor

• Fiber Mach-Zehnder interferometer with 30m path length difference

• AOM frequency difference 400kHz

• Beat frequency measured by photodiode: 𝛥 ሚ𝑓 =
𝑑 ሚ𝑓

𝑑𝑡

𝑥𝐷

𝑐
+ 𝛥𝑓𝐴𝑂𝑀

• Batch 1000 voltage measurements, FFT, identify frequency of peak as 

𝛥 ሚ𝑓, solve for 
𝑑 ሚ𝑓

𝑑𝑡
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Imaging System

• AOM frequency difference 900kHz

• 90% laser power illuminated the target

• 10% laser power acts as local oscillator for heterodyne detection

• Range-to-target varies from 2 meters to 400 meters for different tests
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Long Range Testbed

• 400 meters from 
transmitter/receiver to 
mirror target

• Observed effects of 
atmospheric turbulence 
using non-chirped signal

• Used unwrapping of phase 
of return signal to 
determine limit on chirp 
duration
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Tabletop Testbed

• 2 meters from transmitter/receiver to 
target

• ISAL imaging demonstrations

• Operates at high or low CNRs

• Operates with or without synthesized 
atmospheric turbulence
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50m Atmosphere Characterization
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Phase Unwrapping

• Atmospheric turbulence will cause the 
phase of the return signal to drift

• To focus an image from the ISAL 
system, the phase must be connected 
between pulses

• Phase drift between pulses must be 
less than Τ𝜋 2

• Phase of non-chirped signal 
unwrapped. 
• Allan deviation of phase computed for 

inter-chirp drift
• Standard Deviation of pulses’ phase 

(sub std) computed for intra-chirp 
drift

• Chirp rate between 20 and 40 
milliseconds
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Uncompensated Chirp

• Laser uses a PZT to move a 
grating to tune the laser

• Control input is a triangle wave 
which would ideally give a square 
wave for chirp rate

• Frequency monitor gives the 
chirp rate

• PZT is not closed loop and has 
finite frequency response

• Ringing is observed when PZT 
changes directions

• Constant control rate does not 
give constant tuning rate
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Iterative Compensation

• Control is open loop, but loop 
can be manually closed by 
iterating on the control input

• Shift response to compensate for 
time delay in PZT controller

• Compute error between control 
and response

• Proportional gain: 0.5

• Low-pass filter (moving window 
average) smooths the control 
input to remove ringing from 
feed-back signal when PZT 
reverses travel direction

• Several iterations performed
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Post-processing

• The chirp rate can be manipulated by distorting time

• Voltage history from the receiver photodiode can be resampled in time 
to compensate for fluctuations in the chirp rate

• The noisy chirp rate 
𝑑 ሚ𝑓

𝑑𝑡
is measured by the frequency monitor

• The phase progression is related to the passage of time:

φ =
𝑑 ሚ𝑓

𝑑𝑡

𝑥

𝑐
+ 𝛥𝑓𝐴𝑂𝑀 ǁ𝑡𝑓 − 𝑡0

• Replace the noisy chirp rate with a constant and introduce pseudo time: 
𝑑 ሚ𝑓

𝑑𝑡

𝑥

𝑐
+ 𝛥𝑓𝐴𝑂𝑀 ǁ𝑡𝑓 − 𝑡0 =

𝑑 ҧ𝑓

𝑑𝑡

𝑥

𝑐
+ 𝛥𝑓𝐴𝑂𝑀 ҧ𝑡𝑓 − 𝑡0

• Take photodiode voltage history 𝑉𝑖 and sample at fractional index

𝑖′ = 𝑖 + σ𝑗=0
𝑖

𝑑෩𝑓 𝑡𝑗

𝑑𝑡
−
𝑑ഥ𝑓

𝑑𝑡

𝑥

𝑐
𝑑ഥ𝑓

𝑑𝑡

𝑥

𝑐
+𝛥𝑓𝐴𝑂𝑀
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Before Resampling After Resampling

Chirp Rate
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Before Resampling After Resampling

Frequency Monitor PSD
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Impulse Response (IPR)

• Shiny metal ball as target of ISAL 
transceiver (nearly perfect point 
target)

• Resample voltage history to 
linearize chirp

• Averaged PSD of ~200 linearized 
chirps

• Main lobe closely matches the 
theoretical IPR function. 
Difference indicates loss of 
0.04mm of range resolution out 
of 2mm total resolution.
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Example Imaging Result
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Conclusions
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