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Abstract

Microarcsecond (μas) astrometry is an indispensable technique to detect earth-like exoplanets, fully characterize
exoplanetary orbits, and measure their masses—information critical for assessing their habitability. Highly accurate
astrometric measurements can also probe the nature of dark matter, the early universe, black holes, and neutron
stars, thus providing unique data for new astrophysics. This paper presents technologies of calibrating detectors
and field distortions for achieving narrow field μas relative astrometry with a focal plane array detector on a 6 m
telescope.

Unified Astronomy Thesaurus concepts: Astrometry (80); Calibration (2179)

1. Introduction

Gaia mission has revolutionized astrophysics by providing
extremely accurate global reference astrometry. Going beyond
Gaia to achieve narrow field microarcsecond (μas) astrometry
enables to detect earth-like exo-planets by measuring the reflex
motion of the host stars (Unwin et al. 2008). Even though
popular methods like radial velocity (RV) and transit have
successfully discovered thousands of exo-planets, only the
astrometric detection method would allow us to fully determine
the orbits and measure the masses of the exo-planets in
general.3 The mass of an exoplanet is a crucial parameter for
determining whether the planet is suitable for hosting life
because its atmosphere and geophysical processes strongly
depend on the mass. Compared with the RV method,
astrometric detection is less affected by perturbations due to
stellar activities and has better sensitivity for longer period exo-
planets, thus complementary to the RV and transit methods.
For this unique role, NASA has listed “Stellar Reflex Motion
Sensitivity—Astrometry” as a Tier 1 Technology Gap
(NASA’s Strategic Technology GAP2020) for measuring the
masses of habitable exoplanet targets.

Besides exo-planet sciences, μas astrometry can be used to
study the nature and distribution of dark matter by accurately

measuring stellar proper motions. In addition, highly accurate
astrometric measurements could allow us to study black holes
and neutron stars in the investigations of black holes mergers,
study of X-ray binaries, and detection of microlensing
effects. Measuring the microlensing effects of primordial
black holes and coherent proper motions at the large scale can
also be used to uncover key information about the early
Universe.
Gaia’s end-of-mission accuracy is 10–20 μas

(Lindegren2020a, 2020b). The best Hubble Space Telescope
accuracy is 20–40 μas (Riess et al. 2014). The Space
Interferometry Mission (SIM) in the decade of 2000–2010
was the first mission attempting to perform μas astrometry
using stellar interferometry. For SIM, sophisticated calibration
had to be developed to correct for systematic errors such as
stellar color effects needed to achieve measurements at the μas-
level of accuracy (Unwin et al. 2008; Milman et al. 2007; Zhai
et al. 2007; Zhai 2009; Zhai et al. 2009). Unfortunately, SIM
did not go on as a flight project, thus to date there are no μas
astrometric capabilities available for astrophysics.
Modern focal plane array CCD and CMOS detectors offer

accurate measurements of photon fluxes with very low read
noise over a regular array, typically much larger than 1K × 1K,
with the pixel as small as a few microns. Working with a
diffraction-limited large space telescope is a natural choice for
the next generation of accurate space astrometry. The Near-
Earth Astrometric Telescope(Malbet et al. 2012) and the
recent Theia (Malbet et al.2022) are two mission concepts
proposed to the European Space Agency to perform μas-level
astrometry using a meter-class telescope with a focal plane
array detector. NASA’s priority flagship mission for the next
decade will be a 6 m telescope for observing habitable
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3 RV can only measure the product of mass and the sine of the orbit
inclination. A face-on orbit would have zero RV signals. Direct imaging might
help determine the orbit inclination, but the inner working angle may limit this
approach to only a small subset of the geometric configurations.
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exoplanets and in the search for new physics. For exo-planet
sciences, ability to determine masses of habitable exoplanetary
targets is crucial. All these mission concepts call for
technologies to calibrate detectors and optical field distortions
to achieve μas accuracy needed for reduction of the systematic
errors due to imperfect detectors and optics down to sub-μas. A
search for Earth-like planets in the habitable zone of nearby
FGK stars means looking at bright nearby stars. Many of these
stars will saturate the detector on a 6 m space telescope. When
a bright star is saturated, the diffraction spikes can be used to
locate the star for astrometry. We therefore must consider doing
astrometry using the diffraction spikes of these saturated stars
in the image.

This article presents our research work on calibration
technology to characterize pixel responses of array detectors
and field distortions for achieving μas astrometry. We also
discuss future works needed to demonstrate the viability of this
technology. In Section 2, we describe our calibration
architecture. We present results in Section 3. In Section 4 we
conclude and discuss directions for future work.

2. Calibration Architecture

If observed from 10 pc, the reflex motion of the Sun under
the gravitational pull from the Earth results in an astrometric
displacement with magnitude of 0.3 μas. Assuming an
observing cadence of 50 measurements over 5 yr, the
end-of-mission accuracy needed to detect such a planetary
system at an SNR of 6 is 0.05 μas. The single measurement
accuracy needed is sqrt(50) × 0.05 μas ∼ 0.35 μas.
Astrometric errors consist of both random and systematic
errors. Random errors mainly come from photon shot noise,
detector read noise, dark currents, and zodi background noise
and can be mitigated by collecting enough signal. Systematic
errors, on the other hand, require accurate and viable
calibration methods to correct.

Two major sources of systematic errors for accurate
astrometry are those due to imperfect detectors with non-
uniform pixel geometry and optical distortions due to optics
with aberrations and misalignments. To calibrate for the pixel
geometry variations and to account for semiconductor fabrica-
tion errors, we use laser metrology and apply a low-order
polynomial model to calibrate field distortions by observing a
dense star field with systematic dithers of the field of view
(FOV). Because target stars are typically nearby stars, they are
bright and may saturate the detector for a 6 m telescope. We
shall also handle the special case of centroiding saturated stars
by locating their diffraction spikes.

Several groups have tried similar approach in the past using
HST images and more importantly Gaia images, where
absolute astrometric accuracy of ∼100 μas was claimed. The
Gaia detector saturates for stars brighter than G ∼6 mag
(Sahlmann et al. 2016). It should be mentioned that Gaia is an

absolute astrometric instrument while exoplanet astrometry is
relative astrometry. That is if centroiding the star using the Airy
disk has a slight offset from centroiding using the diffraction
spike, that offset is not a problem for exoplanet detection if it
does not vary between epochs as we are only interested in the
motion of the star not its absolute position in the sky. However,
this offset may not be stable and could depend on the field,
therefore it is important to calibrate this offset. Our calibration
technique will be described in the context of the system
architecture presented in the next subsection.

2.1. System Architecture

Our study is based on the Theia mission design, which is a
single spacecraft carrying a meter-class or larger Korsch three-
mirror anastigmatic (TMA) telescope (Malbet et al.2022). This
can be scaled to a larger telescope of 6 m. To have a sufficiently
large FOV, which we assume to be 8′, it is necessary to have
tertiary optics to correct for wave front aberrations needed to
achieve good imaging quality. An astrometric telescope
produces images of the sky and therefore maps the sky into
the detector’s pixel coordinate. An ideal system could be
modeled geometrically by mapping the celestial sphere
coordinate, right ascension, and declaration, into an imaging
plane sampled by a uniform rectangular pixel coordinate in
terms of rows and columns. A realistic system contains both
random and systematic astrometric measurement errors. For a
6 m telescope considering here, an integration time of 10
minutes provides sufficient number of photons that can be used
to average down random errors to a sub-μas level for targets
brighter than a 12th mag star. It is crucial to calibrate the
systematic errors from the imperfection of the detector and
optics, which we shall describe in detail.

2.2. Calibration Methods

The dominant imperfection is pixel geometry errors. For
this, we have developed laser metrology that projects laser
fringes on the focal plane array (which might be a mosaic of
chips) to measure the responses in the Fourier domain. A
study based on simulation has shown this method can
perform centroiding at the micropixel level (Zhai et al. 2011),
which is sufficient for a sub-μas astrometric accuracy. This is
possible because the pixel scale must be less than 0 1 to
critically sample diffraction limited point-spread-functions
(PSFs) from a meter-class optical telescope. Imperfect optics
comes from aberrations due to field distortions, wave front
errors due to misalignment, and field-dependent footprint on
the optics that is present mainly due to beam walk on the
tertiary optics.
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2.2.1. Detector Calibration using Focal Plane Metrology

Normal CCD/CMOS detector calibration measures the QE,
dark current, and read noise of each pixel and assumes the
pixels are perfectly spaced in a rectangular grid. QE gradients
within a pixel and geometric errors in the placement of pixels
will result in centroiding errors of ∼ 1e-3 pixels. We describe
below a calibration procedure that measures the position of
every pixel relative to a regular grid with 1e-4-pixel accuracy.
For a 4um pixel, this is equivalent to measuring the X and Y
positions of the pixel to 0.4 nm. The calibration technique uses
laser light launched from the tips of fibers to illuminate the
focal plane (Figure 1). Two fibers’ illumination creates fringes
on the pixels. If the fiber ends are attached to a thermally stable
block, the fringe spacing is then a stable reference for the
metrology of the pixels. The fringes can be made to move
across the focal plane by shifting the phase of the light
launched from one of the fibers relatively to the other. The
intensity variations detected by a pixel can be used to determine
the fringe phase at the pixel, thus the effective location of the
pixel. With the moving fringes we can calibrate the pixel
geometry of all the pixels at the same time.

If the mission need to use a mosaic focal plane detectors, we
would need to have this metrology system implemented on the
space mission hardware to have on-board calibration capability
to monitor the relative position drifts between the detectors in
the mosaic.

2.2.2. Field Distortion Calibration

The key to a successful field distortion calibration is a
distortion model that can describe the field distortion with sub-
μas errors. Theoretically, we know that the field distortions
from a perfect optical system can be modeled as lower-order

polynomials. Based on simulations, we found that optical field
distortions from optical systems with wave front aberrations
can all be modeled in terms of low order polynomials to sub-
μas (as shown in Section 3.2). Such aberrations include those
due to non-ideal optics with peak-to-valley wave front errors of
λ/20, misalignment errors at the level of 1″, and those due to
the beam walks on tertiary optics. This is well understood as
the wave propagations near the optical axis tend to smooth out
the effect of wave front aberrations of higher spatial frequency
on the optics.

2.3. Error Budget for μas Astrometry

Theia mission (Malbet et al.2022) aims at finding earth-like
planets in nearby Sun-like stars using ∼100 visits. A single
epoch measurement of accuracy 0.6 μas would give an end-of-
mission accuracy of 0.06 μas, allowing to detect an Earth-clone
at 10 pc (astrometric signal of 0.3 μas) with an SNR of 5. For a
6 m telescope, we assume to use totally ∼50 visits to find exo-
earth at a distance of ∼20 pc (0.15 μas astrometric signal).
Assuming an SNR of 6 (using a higher SNR would ensure less
false positives), this would require a single epoch measurement
to have accuracy of ∼0.18 μas in view of the end-of-misson
accuracy to be 0.18 μas/sqrt(50)∼0.025 μas. Table 1 shows
the single measurement error budget for 1 m and 6 m
telescopes respectively, with integration times of 1 hr and
10 minutes, which are determined by the requirement for
averaging down random astrometric errors.

3. Results

In this section, we present our results on the calibration
techniques based on lab experiments and simulations as a
preliminary validation of our methodology.

Figure 1. High-precision calibration of focal-plane errors uses moving fringes placed on the detector. Each pixelʼs location can be derived from the measured phase
and amplitude of the fringe at that pixel.

Table 1
Single Epoch Error Budget for μas Astrometry

Telescope diameter Integration Time (s) random error (μas) Detector Calibration (μas) Optical Distortion (μas) Total (μas)

1 m 3600 0.44 0.3 0.3 0.61
6 m 600 0.13 0.066 0.066 0.18
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3.1. Detector Calibration

3.1.1. Pixel Geometry Calibration

Pixel geometry calibration can be performed using the laser
metrology shown in Figure 1. The leading order inter-pixel
response variations are pixel QE (flat field response) and
effective pixel locations in the array, which can deviate from a
regular grid. We have characterized an E2V CCD39 with an
array size of 80 × 80 for flat-field response and x- and y-
direction pixel-location irregularity. The left plot in Figure 2
displays relative QEs of 80 × 80 pixels. The mid and right
plots display the pixel irregularity as deviations in X (row) and
Y (column). This particular 4-quadrant sensor showed a very
obvious “step and repeat” error of a few percent of a pixel in
the column direction. The pixel location measurements reach a
precision of 1e-4 pixels with an integration time of about 100 s
(Shaoet al. 2011). This particular CCD has 24 μm pixels with
about 700 nm pixel placement error between the left and right
half of the chip and random pixel-to-pixel location errors on the
40–50 nm scale.

3.1.2. Accuracy of Differential Centroiding of Pseudo-stars

Astrometry is the measurement of the angular distance
between stars, and the brightness centroid is an effective
measure of the position of a stellar image. Inter-pixel response
variations directly affect centroiding stars in the field. The
ultimate test of the accuracy of focal-plane calibration and
centroiding is an astrometric validation experiment, which we
now describe. The focal plane is illuminated with some pseudo
stars, in this case, generated by imaging a fiber bundle onto the
sensor shown in Figure 3, where three pseudo-star images
appear on the camera which has been calibrated. The camera is
then moved while frames are being taken so that the images fall
on different regions of pixels. Assuming that the pseudo-star
images are stable relative to each other, the measured
separations should be independent of the detector position.

For the micropixel level of precision, it is necessary to take
care of effects arising from pixelated images and the non-ideal
response of the focal-plane array pixels. Regarding the
pixelated images, we are aided in this by the fact that the
stellar images are bandwidth-limited due to the finite aperture
of the telescope because telescope images have no structure
finer than ∼ λ/D (projected onto the sky). If we critically
sample the focal plane (i.e., have > 2 pixels per λ/D projected
onto the sky), the PSF shape can be described without loss by
its Fourier transform. We use the Fourier technique to shift
images in a lossless manner, and cross-correlate them to
accurately estimate the distance between the stars.
The right plot in Figure 3 shows the experimental results of

the variations of the measured distance between stars A and B
when we displaced a calibrated CCD. Since the separation of
the pseudo-stars A and B is stable, the variations in the
measured distance between A and B are due to errors. Without
any calibration, this error can be as large as 1 milli-pixel. The
calibration reduced the error to about 100 μ pix per
step.Similar accuracy has been reported inCrouzier et al.
2016. Averaging 10 steps can further reduce the error roughly
by a factor of 1/sqrt(10). Our operational concept calls for
dithering the system pointing to take advantage of the
averaging.
We note that pseudo-stars shown in Figure 3 are generated

using a broadband source while our calibration of pixel
responses (Figure 1) was measured at laser wavelength 633 nm.
The successful calibration shows that the leading effect of the
pixel response on centroiding is not very spectrally sensitive.
However, future exploration of spectral dependency of the
pixel response calibrations may be needed as we go to higher
accuracy.

3.2. Field Distortion Calibration

Field distortion in a telescope means that stars imaged by the
telescope do not appear in the locations corresponding to the

Figure 2. (Left) Flat-field response; (Center) Pixel-location irregularity (row, X); (Right) pixel location irregularity (column, Y).
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angular positions of the stars with perfect fidelity as a
geometric projection from the plane of sky. A telescope with
optical elements having zero wave front error can still have
significant distortion. In our telescope design, which is
symmetric, the distortion is only in the radial direction, see
Figure 13 in (Nemati et al. 2020). We conducted simulations
tracing millions of rays at ∼10,000 points in the FOV and
found that the radial distortion can be modeled to very high
accuracy, < 1μas, with a ninth-order polynomial as shown in
Figure 4.

3.2.1. Field Distortion from Misalignment

If we perturb the optical alignment by a small amount, the
image would be, in general, still diffraction-limited. The
distortion map, however, would be no longer circularly
symmetric and had both radial and azimuthal terms. We found
that the distortions for an imaging system with optics with zero
wave front errors and 1″ alignment error can be fitted with a
low-order 2D polynomial with centroiding errors less than 1e-5
pixel (Malbet et al.2022).

Figure 3. (Left) An astrometric test measures the consistency of inter-star distances on the focal plane as the line of sight is changed. (Right) Results of an astrometric
test: centroid distance between pseudo-stars A and B in row and column directions, with mean removed, vs. the displacement of the CCD.

Figure 4. Modelling optical distortion and its removal: (a) the residual radial field distortion after removing a linear radial trend; (b) the rms error, in arcseconds, after
removing a polynomial fit of successively higher orders. The line at 1 μ as represents a reference point and also the approximate allocation to this error.
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3.2.2. Field Distortion from Optics Fabrication Errors

Diffraction-limited optics are manufactured to very tight
tolerances. But when centroiding a star’s position to 1e-5 of the
diffraction limit, even λ/20 p–v (peak-to-valley) wave front
errors can result in significant biases. Wave front errors on the
primary would produce changes in the PSF, but do so in the
same way for all stars in the FOV, thus would not introduce
distortions. The wave front errors on subsequent surfaces,
however, would be sampled differently by stars in different
parts of the FOV, which would lead to field-dependent
centroiding errors, thus distortions. Optical surface wave front
errors at or near the image plane would not result in significant
optical distortions. For a TMAtelescope (Nemati et al. 2020;
Malbet et al.2022), the hole in the primary is larger than the
secondary to avoid the shadow of the secondary and the
secondary is made large enough to avoid the footprint of
starlight to walk off the secondary mirror over the FOV.
Geometrically, the beam walk is the largest on the curved
tertiary mirror. In this section, we evaluate the astrometric
distortions caused by a tertiary mirror that has a λ/20 p–v wave

front error, where the p–p (peak-to-peak) beam walk is 50% of
the diameter beam (see Figure 5).
High-quality optics typically have wave front errors with p–v

amplitude of λ/15 p–v (about +/− 0.2 radians in phase) with a
1/f 3 spatial frequency power spectrum (or 1/f 1.5 amplitude
spectrum). We simulate a set of wave front errors by first
generating Gaussian white noises sampled at 8K x 8K grid
points and then applying a low-pass filter with 1/f 1.5 response
and scaling the p–v value to λ/15. We found that the rms of
wave front errors is about λ/100. While a wave front error of
λ/15 p–v (∼ 40 nm p–v for λ = 633 nm) represents a high-
quality diffraction-limited optic (the state-of-the-art optics for
EUV lithography is a diffraction-limited optic at λ = 13nm.).
We sample the beam footprint as a circle with a diameter of

4000 points, i.e., each star over the FOV samples its own 4000-
point diameter circle on the tertiary mirror as illustrated in
Figure 5. For each position in the FOV, we fit a plane to the
phase error in the 4000-point circle of the corresponding
footprint. The tilt of the plane represents the leading order
centroid shift due to this wave front error. Figure 6 plots the
centroid shift in the X and Y directions over the FOV.
The centroid shift is a slowly varying distortion function

over the field with a p–v range of 100 μas. It can be modeled by
a two-dimensional polynomial model and calibrated by using
reference stars in the FOV. A relatively low-order polynomial
can model this type of distortion because the wave front error is
averaged over the beam, and the beam walk is limited to 50%
of the beam diameter p–v. Figure 7 shows the distortion error
residual rms after fitting two 2D polynomials as functions of
the order of the 2D polynomials.
Figure 8 shows centroiding residuals over the field after

fitting a 15th order 2D polynomials. We note that the residuals
are within +/−0.1 μas.

3.3. Centroiding using Diffraction Spikes

In astrometric detection of exoplanets, quite often, the target
star is very bright (∼ 0–8 mag) while the reference stars are
dim (∼ 12–19 mag). For the brightest nearby stars, the image
will saturate the detector. Fortunately, CMOS detectors do not
bleed but the stars will be saturated. In this section, we describe
a simulation study to answer how we can accurately centroid a
saturated star using the diffraction spikes (in case of an off-axis
telescope design, one can always introduce a spider near a pupil
on purpose). The parameters used for simulation are displayed
in Table 2.
From the physical optics point of view, the diffraction spikes

are a part of the PSF of the telescope caused by the spider
holding up the secondary. The spider blocks light at the pupil
of the telescope, thus changing the amplitude of the wave front.
The vertical spider causes the horizontal diffraction spike and
vis-versa. The PSF of the telescope, which includes the Airy
pattern and diffraction spikes, is the square of the Fourier

Figure 5. Generated phase errors (rad) as an 8K x 8K array representing the
optical surface of the tertiary mirror, where the two circles of diameters of 4K
points represents two optical footprints on the mirror surface at the opposite
sides of the FOV.

Table 2
Parameters used for Simulation Study to Perform Astrometry using Diffraction

Spikes

Telescope Diameter (m) 6

Secondary (m) 1.8
Width of spider (m) 0.12
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transform of the electric field ( ) ( ) ( ( )E x y Ap x y i x y, , exp ,f= ),
where Ap(x, y) is a circular telescope aperture function with a
central obscuration and f(x, y) is the wave front the at the pupil
(Goodman 1968). An amplitude perturbation of the E-field of a
perfect wave front produces a symmetric change in the PSF.
That is if we move the position of the vertical spider in the
pupil, the horizontal diffraction spike (caused by the vertical
spider) does not move. What causes the diffraction spike to be
not centered are phase errors in the pupil.

3.3.1. Core-spike Offset

Wave front errors in the pupil also affect the centroid of the
central lob of PSF relative to the spikes because the phase
errors that affect the central lobe are low spatial frequency
phase errors like coma while the phase errors that affect
diffraction spike are high spatial frequency errors. As a result,
we can expect some amount of offset bias between centroiding
the stellar image and the diffraction spikes. We shall call this

Figure 6. Field-dependent centroiding error due to beam walk on the tertiary optics with wave front error of λ/15 (p–v).

Figure 7. rms of field distortion residuals as function of the order of the polynomial model.
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offset between the PSF core centroid and the diffraction spike
centroid core-spike offset. We did a simulation assuming a
random wave front error with λ/18 P–V error and λ/100 rms
(root-mean-square) with a 1/f 3 power law shown in
Figure 9(a) to quantify the core-spike offset.

The spider covers about 2% of the area of the clear aperture.
Because the rms of the wave front error is small, the PSF is
visually the same as the Airy spot from a perfect telescope. At
0.6um, the Airy spot has an FWHM (full width at the half
maximum) of 20 mas for a 6 m telescope. We centroid the
image in two different ways, namely the core centroid, defined
as the centroid of the part of the PSF consisting of the central
lob together with the 1st and 2nd diffraction rings, and the
diffraction-spike centroid, defined as the centroid of diffraction

spikes. Figure 9(b) shows the masks used for the core centroid
and the diffraction spike centroid. The core mask uses the light
in the central lobe as well as the 1st and 2nd diffraction rings.
The diffraction spike mask only used the light from the
diffraction spike when the light from the spike is brighter than
the 4th circular diffraction ring.
The centroids were calculated by fitting the PSF from a

telescope with zero wave front error to the core and then to the
diffraction spikes. Because the wave front error has some tilt,
the core centroid is biased by the tilt and low-order odd
aberrations like coma. The diffraction spikes are biased by the
average wave front tilt and high-order wave front errors. For
the case of the wave front shown in Figure 9(a), the biases in
μas are listed in Table 3.

Figure 8. Distortion Residuals over the field using a 15th order polynomial model.

Figure 9. (a) Wave front errors (radian) over the pupil with an amplitude of λ/100 in rms or λ/18 peak-tovalley; (b) point-spread-function in log scale and mask used
for centroiding spikes.
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The core-spike offset is a fraction of a milliarcsecond, which
is consistent with Gaia’s performance of ∼100 μas for stars
brighter than G = 6 mag using the diffraction spikes (Sahlmann
et al. 2016). Now if the wave front error is constant, the core-
spike offset would also be constant. In narrow-angle astro-
metry, we can calibrate this astrometric offset between the
central lobe and the diffraction spikes.

3.3.2. Calibration of Core-spike Astrometric Bias

Calibration of core-spike astrometric bias can be done by
using an appropriately short exposures, such that the PSF peak
of the bright star is below saturation for simultaneously
centroiding the core PSF and the diffraction spikes to estimate
the core-spike offset. For a spider that blocks 2% of the primary
area, the surface brightness of the diffraction spike is ∼10 mag
fainter than the peak based on simulation. From the photon
noise point of view, the diffraction spikes are sufficiently

bright. For calibration, the diffraction spike is still at ∼6e well
above the low read noise (∼1.5e) of a typical modern CMOS
sensor assuming the core PSF is slightly below the saturation at
(∼60,000 e pixel−1). Note that we can use a high frame rate to
centroid the diffraction spikes because they are bright in
general for saturated stars. For science measurements, the
typical reference star brightness is in the range of ∼12–18 mag,
fainter than the spikes of a saturated star in general, therefore
we cannot afford using very high frame rate due to excessive
read noise. If future CMOS ROIC could support the
simultaneous ROI readouts at different rate, we would not
need to do this calibration because the bright stars would not be
saturated if their corresponding of ROI are read out at very
fast rate.
We now estimate the time required to calibrate a core-spike

offset. Considering the error due to photon noise, centroiding
the central lobe of a star image from a 6 m telescope to 1 μas
accuracy requires a total of N = 1e8 photons according to the
accuracy formula λ/(2*D*sqrt(N)). With Nyquist sampling, the
PSF spread over a bit more than 2 × 2 pixels, so each image
would collect ∼200,000 photons. The central core can be
centroided to 1 μas using ∼500 images to get the required 1e8
photons. To centroid the diffraction spikes, we would need 50X
as many images, 25,000 images. These stars are extremely
bright, and the typical exposure would be 10 s of microseconds.
When a CMOS sensor only reads out a 256 × 256 pixel region,
the readout can be fast up to 1 KHz, so 25,000 images would
take about 25 s.

Table 3
Centroid Offsets Due to Wave front Aberrations

X (μas) Y (μas) R (μas)

Core centroid 787.34 −407.69 884.64
Diff spike 663.38 −180.96 687.61
Core-spike offset 123.97 −226.74 258.42

Figure 10. Core-spike offset as function of target location in the field of view.
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However, the wave front error will change if we place the
target star in different parts of the FOV because of the beam
walk on the tertiary mirror of a TMA telescope (Figure 5). We
therefore need to calibrate the core-spike offset accounting for
field dependency. Fortunately, it is possible to put target in
general near the center of the field, which makes the calibration
of the field dependency much easier. The idea is to calibrate the
core-spike offsets by putting targets in a grid of locations near
the center of the field. As described above, the amount of
telescope time needed to calibrate the core-spike offset is pretty
short, which would be feasible for real operation.

Our simulation assumes that the telescope has an 8~ ¢ FOV
and the target star can be placed at the center of the FOV to
+/− 3 4, so the beam walk is about +/− (0.5 1/(8 × 60)/
3.4=) 1/280 of the diameter of the tertiary. Using a similar
simulation as described in subsection 3.2.2, where the wave
front error was generated over a 4K × 4K array with a circle of
diameter of 1K representing the footprint of the target star. The
footprint on the tertiary mirror depends on the target position in
the field. We simulate the cases where the target star is put on a
5 × 5 grid at the center of the field with a grid spacing of 1 7
(∼ 330 pixels for sampling the focal plane of a 6m telescope
with a pixel scale of λ/(4D)). The effect due to beam-walk is
simulated by shifting the footprint (circular phase screen) an
amount reflected by the beam-walk on the tertiary. We then
calculate the centroids of the core PSF and the diffraction
spikes using the corresponding wave front errors. The spike-
core offsets for 5 × 5 points in the FOV are displayed in
Figure 11 respectively for X and Y directions as two colormaps.

There is an overall offset of about 38 μas along Y. The
variation of the core-spike offset with the target position in the
field shows a dominant linear gradient with a range of about
3 μas over the 5 × 5 grid. A quadratic form C0 + C1X + C2Y +
C3X

2 + C4XY + C5Y
2 can model this dependency with

residuals shown in Figure 11. To the accuracy of 0.1 μas, these
residuals are negligible. Therefore, if we estimate Ci, i = 0, 1,
L ,5, for both the core-spike offset along X and Y directions
respectively using the calibration data by putting the target star
at a 5 × 5 grid point near the center of the field, we can correct
the field-dependent core-spike offset for astrometry of the
target star using its diffraction spikes.

4. Future Work

We have presented an architecture for calibrating systematic
errors needed to achieve sub-μas astrometry for a 6 m telescope
and demonstrated the key concepts using simulations and some
lab experiments. Future work will extend our detector
calibration to large format CMOS imaging arrays for a large
FOV. We also plan to perform an experimental demonstration
of calibrating optical distortion at the 1e-4-pixel level. And last,
we would like to do an experimental demonstration of
centroiding using diffraction spikes to 1e-4 pixels.

4.1. Calibrate Pixel Responses of a Large Format CMOS
Detector

Detector characterization work by Karpov et al. 2021 has
shown that the Andor Marana is a very promising CMOS

Figure 11. Core-spike offset residuals after fitting a quadratic function of target field position.
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camera for sky survey applications. For visible focal plane
arrays CMOS is now equal or superior to CCDs in every aspect
important for astronomy including detection efficiency, dark
current, read noise, frame readout rate, saturation bloom, and
electronic cross talks.

This is apparent if we compare a typical science grade CCD,
STA 1600LN ∼ 100 Mpix, with a Sony IMX 411 CMOS ∼
150 Mpix. Both devices are backside detectors with high QE
greater than 90%. They both have low dark current (the CMOS
is < 0.005 e s−1 @ 0C). Sony IMX CMOS has lower read
noise 1.4e versus STA CCD’s 3.5e (some smaller format
CMOS now have < 0.5e read noise). The big difference is the
time needed to read out all the 100 + Mpix. The CCD takes ∼
60 s while the CMOS takes only 0.5 s.

The CCD needs a mechanical shutter to block the light while
it is being read out. CMOS has an electronic shutter with near
zero (a few usec) dead time between exposures. CMOS devices
do not bloom or bleed; saturated pixels do not corrupt adjacent
pixels. The Sony chip we have used has an analog full well of
∼ 80,000e (3.8 μm pix) but we use it at high gain to get the
lowest read noise. In this mode, the 16 bit A/D saturates at ∼
30,000e and the linearity is better than 0.1% (limited by our test
setup). In some CCDs with multiple read amplifiers, we have
seen ghost images caused by the electrical crosstalk between
the read amps at the level of 1e-3. On CMOS we have not seen
this artifact at 1e-4.

We plan to calibrate the pixel responses of a large-format
CMOS detector by extending our existing work on the
calibration of an E2V CCD. This extension would require
accounting for the fringe curvatures due to the large detector,
for which the linear approximation of the fringes is no longer
valid.

4.2. Test Field Distortion in Lab

We have used simulations to study the field distortion
calibration and would like to further validate the concept with

lab experiments. The distortion map of the flight telescope can
be measured in lab with a holographic element illuminated with
a laser light to generate 10,000 points in the focal plane. In the
lab demonstration, we will use a Cassegrain telescope instead
of a TMA to reduce cost. We will scale the FOV of the system
so that the fractional beam walk on the secondary is roughly the
same as on the strawman design of the large TMA telescope.
The experimental setup will consist of a laser source and

∼20 cm collimating telescopes as displayed in Figure 11. The
collimated beam will hit a diffracting surface, which is a
rectangular array of 60 μm holes in a nickel coating. The
diffracting optic was created at JPL’s microdevices lab using
their e-beam lithography machine, precise at the few 10ʼs nm
level. The diffractive surface produces an array of beams,
which the receiving telescope focuses into a rectangular array
of Airy disks. Wave front errors in the collimating telescope
will be common across all the images. Any irregularities in the
spacing of the holes will cause a slight change in the PSF of the
Airy spots but again be common across all the images in the
focal plane. The receiving telescope will be a ∼20cm
Cassegrain telescope on a mount that can tip and tilt the whole
telescope and camera.
The diffractive grating is designed to produce a brighter

zeroth-order diffractive image than the others. The zeroth-order
diffractive image will be the “target” star, and the others will
serve as reference stars. Because the reference stars are
generated by the diffraction grating, we know their relative
positions precisely. As a result, we can use their centroids to
compute the coefficients of the polynomial distortion model
directly, which we expect to compensate for both the changes
in telescope alignment and the λ/20 P–V figure errors of the
optics. Centroiding to 1e-4 pixels requires getting enough
signal so that photon noise level is below 1e-4, therefore, we
need to collect at least 1e8 photons on the target star. Since the
full well is ∼ 50,000e, and the PSF spans ∼ 2*2 pixels, we

Figure 12. Testbed setup for field distortion calibration. The grating generates a regular pattern (grid) of stars. The test article represents the flight telescope being
calibrated for field distortion. A pincushion distortion is illustrated.
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need ∼500 exposures. If we record images at ∼ 1 Hz, this will
take ∼500 s per data set.

We will first take one data set, solve for the polynomial
coefficients, and measure the position of the target star. We will
then tip/tilt the telescope/camera by a few arcmins and collect
another data set (∼500 images). We will repeat the analysis to
verify that the target star is at the same location relative to the
reference stars. We will do this experiment in a vacuum
chamber to validate astrometric accuracy at the 1e-4-pixel level
by repeating the tip/tilt 10 times and checking the consistency
of the estimated target star’s position relative to reference stars.
A typical atmospheric seeing causes a fraction of arcsec motion
for stellar images from a ground-based telescope. Averaging
500 images might bring the atmospheric image motion to ∼ 10
mas. In a lab setup shielded from the heating/air-conditioning
airflow, the air turbulence is at least 10 times smaller. In a
vacuum chamber, we expect the atmospheric turbulence effect
to be less than 1 μas at a pressure below 1 mbar. The vacuum
chambers we plan to use will use roughing pumps to get
pressure below ∼10 μbar.

4.3. Centroiding using Diffraction Spikes

We also plan to demonstrate in the lab the centroiding of
saturated stars using diffraction spikes. We will project light
from a fiber into a simple telescope with a fake spider to create
the diffraction spikes. To calibrate the offset between the Airy
core centroid and the diffraction spike centroid, we will use a
CMOS detector that allows a very rapid readout of a small part
of the chip. The IMX455 allows reading out a 300 × 300 pixel
region at 500 Hz. For a Nyquist sampled PSF and a ∼ 50,000e
full well, we collect ∼ 200,000 photons of the star and more
than 2000 photons for the diffraction spike per image.
Calibrating the offset to 1e-4 pixels would require collecting
1e8 photons from the diffraction spikes. We will need
50,000 images, which would be 100 s of data at 500 Hz.

As a validation, we will move the image to another part of
the detector by translating the detector by a few 10ʼs to 100
pixels away and repeat to verify that we have measured the
core-spike offset with adequate accuracy. We will first calibrate
the detector’s pixel responses and incorporate the effective
pixel locations in the data processing to generate centroid
estimations (Zhai et al. 2011).

5. Conclusions

To achieve μas astrometric measurements with space
telescopes, we need to account for the effects of everything
that photons touch traveling from the target star to the detector.
In this paper, we have outlined an approach for μas-level
narrow-angle relative astrometry and presented three technol-
ogies to calibrate errors due to detector, optics, and star
saturation. The detector errors due to pixel geometry and QE
gradients within a pixel can be calibrated with laser metrology.

Optical errors lead to field distortion errors that can be modeled
as low-order 2D polynomials and calibrated by observing
dense star fields with dithers. Star saturation errors can be
described by the “core-spike” offset, the astrometric offset
between the centroid of a star’s core and the centroid of the
diffraction spikes, which can be calibrated using high frame
rate images.
We have presented lab results showing 1e-5 λ/D centroiding

accuracy by using laser metrology calibration and discussed the
extension to larger detectors. We have also presented field
distortion results from modeling high-quality optics with wave
front errors of a typical 1/f ∧3 power spectrum and the
calibration of the errors observing 100 reference stars. We also
discussed how we could demonstrate field distortion calibration
in the lab. And last of all, for astrometry of bright target stars
relative to faint reference stars, we can calibrate the core-spike
offset and its weak fiend dependency. This core-spike offset
calibration allows us to use longer exposures to measure the
position of bright stars relative to faint reference stars to avoid
excessive read noise by centroiding the diffraction spikes of the
saturated stars. We hope these technologies will mature for
future missions like the 6 m flagship mission to adopt and
enable the new science capabilities from the μas astrometry.
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